都市規模と市町村合併に関する経済分析

岡山大学経済学部教授 中村良平 岡山大学大学院経済学研究科 大塚章弘

問題意識

- ◆適正な人口規模はどれくらいか?
- ◆問題の困難性
 - ■都市の適正規模の捉え方
- ◆過去の例
 - ■明治の大合併:戸籍や小学校等
 - 昭和の大合併:新制中学の運営
 - 現在:基準となる行政サービスがない
 - + 自主的合併

都市規模と市町村合併の実証分析

- ◆横道·沖野(1996)、吉村(1999)
 - 公共サービス供給の最適人口規模を導出
- ◆生安·鄭(1998)
 - 地方公共財モデルを設定し、導出
- ◆総務省
 - ■個別事業の行政経費を基準として算出

地方の歳出構造に焦点をあてて、要因分析に終始

本稿の目的

- ◆経済学的観点からの都市規模を考察
- ◆都市住民の経済的厚生の変化に着目
- ◆市町村合併による財政支出効率化効果の シミュレーション

1. 都市の最適規模の概念

都市規模の概念

- ◆農耕社会
 - 農地面積と交通輸送技術(馬)によって制約
- ◆産業革命
 - 蒸気機関の実用化 急激な人口成長
- ◆現代
 - 税金・補助金といった地域間所得移転の存在 都市規模の大小に影響

都市の成立

- ◆集積の経済を内部化した収穫逓増の存在
- ◆集積の経済が複数の都市で存在 都市間の均衡状態は不安定 先行して巨大化した都市が他の都市を 凌駕する可能性(例:東京)

一都市の場合

- ◆定義
 - 都市規模 = 人口·事業所の集積の程度
- ◆仮定
 - 都市規模の指標 = 人口
 - 都市規模以外の要因も人口の関数 都市の生産性:都市規模だけの関数

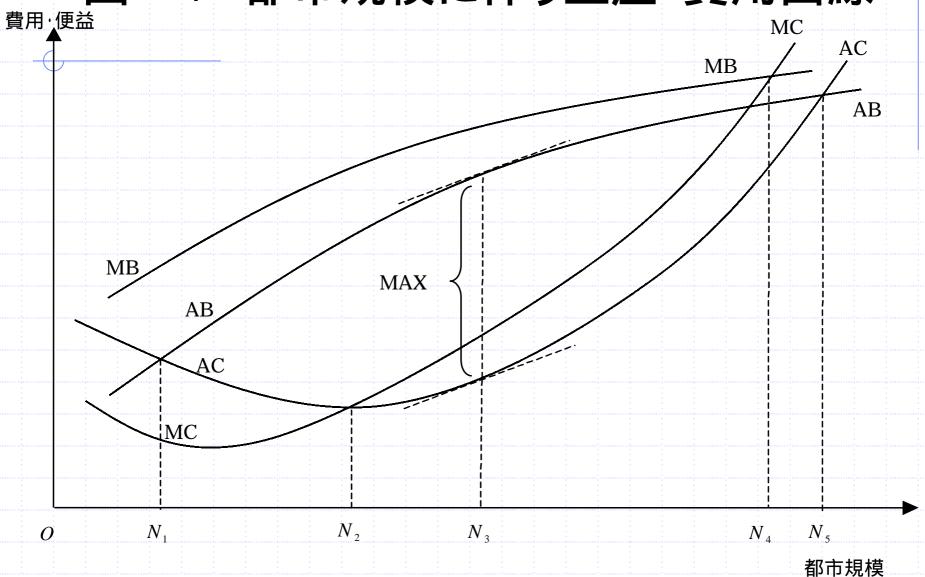
伝統的な最適規模のアプローチ(1)

- ◆一人当たり便益最大アプローチ
 - 都市の最適規模 = 一人当たり便益最大人口
 - ■集積の経済を強調するもの
- ◆問題点
 - ■都市規模の巨大化
 - N.Y.の事例:反曲点の推定誤差が高い

伝統的な最適規模のアプローチ(2)

- ◆一人当たり費用最小アプローチ
 - 都市の最適規模 = 一人当たり費用最小人口
 - 規模の経済性を強調するもの
- ◆問題点
 - 一人当たり便益が一定のときのみ意味がある
 - 都市規模とともに一人当たり生産性は増加

費用と便益の双方を考慮する必要


都市の便益の定義

- ◆Richardsonによる便益の定義
 - 所得
 - ■地方公共財供給のスケール・メリット
 - 消費の外部経済(豊富な消費機会)
 - コミュニケーションの容易さ
- ◆本稿の定義
 - ■都市の生産性を反映する総所得額

都市の費用の定義

- ◆Richardsonによる費用の定義
 - レントの上昇
 - 生活費用、通勤費用、混雑費用
 - 税金
 - 騒音などの心理的費用
 - 大気汚染公害にさらされるリスク
- ◆本稿の定義
 - ■地方公共団体の総歳出額

図 - 1 都市規模に伴う生産・費用曲線

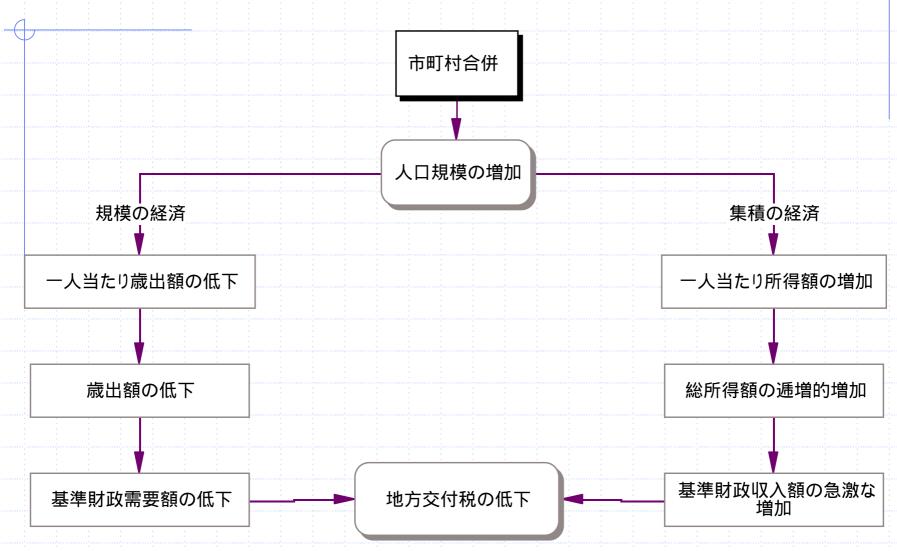
図 - 1の各曲線の意味

- ◆ AB: 平均生產性曲線(凹関数)
 - 都市全体の付加価値である生産所得を人口で割った もので定義
- ◆AC:平均費用曲線(凸関数)
 - 住民あたりの行政経費負担額を意味
- ◆MB: 限界便益曲線
 - 都市規模の限界的拡大に対する便益の変化
- ◆MC: 限界費用曲線
 - 都市規模の限界的拡大に対する費用の変化

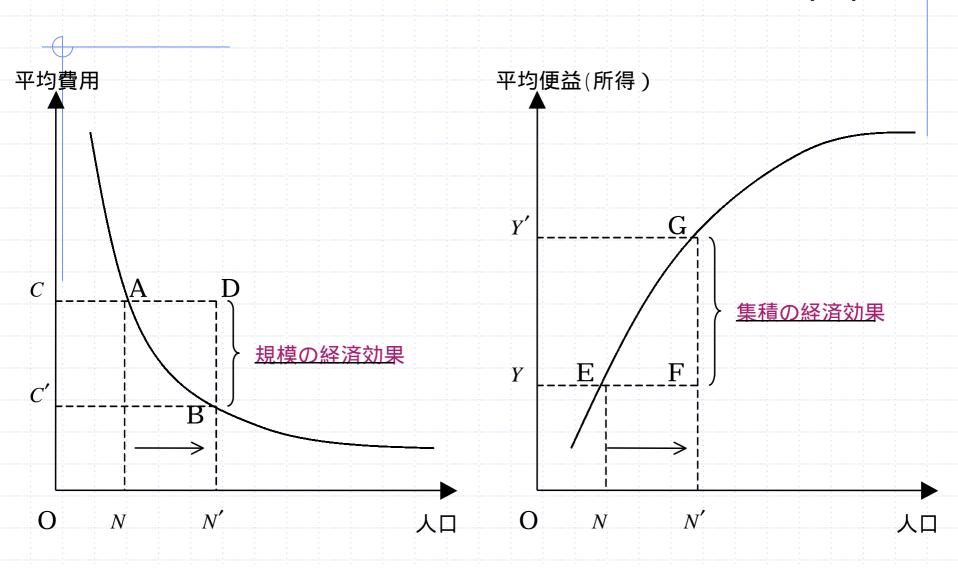
図 - 1における交点の意味

N₁:最小可能都市規模(Minimum Threshold City Size)

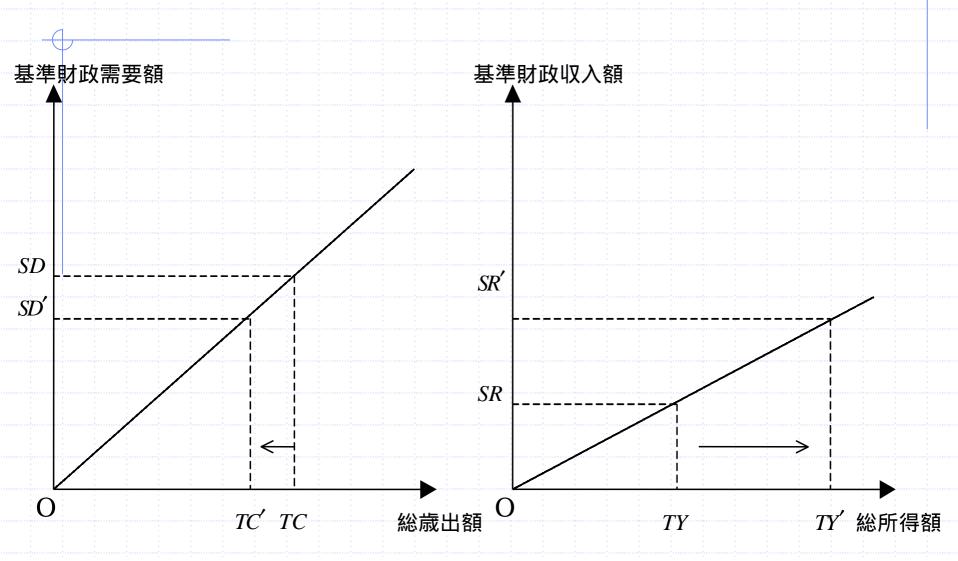
N₂: 一人当たり費用最小 都市規模 (Minimum Cost City Size)


N₃: 純便益最大都市規模 (Maximum Resident Welfare City Size)

N4: 社会的最適都市規模 (Social Optimal City Size)


N₅:市場均衡都市規模(Market Equilibrium City Size)

最適人口規模は、一都市住民の視点に立つか、国家的な視点に立つかによって異なるが、いずれにせよ一人 当たり費用最小点とは一致しない


図 - 2 財政支出効率化の経路

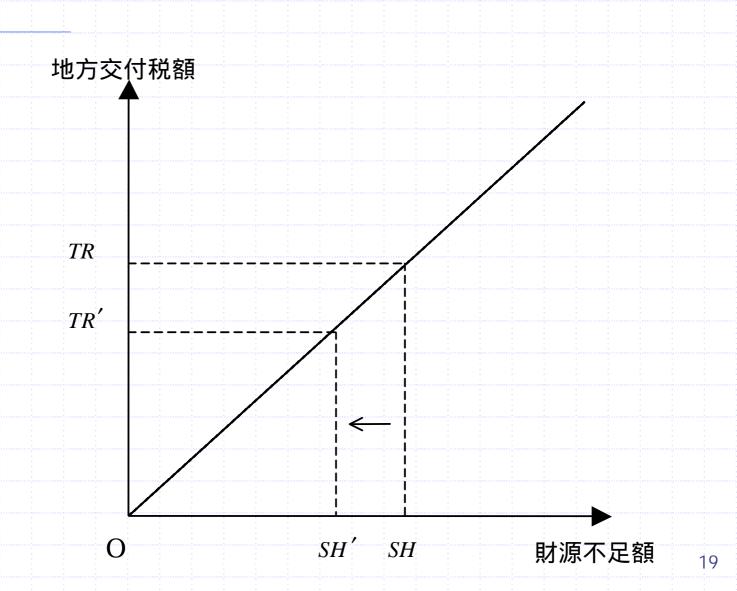

図 - 3 財政支出効率化メカニズム(1)

図 - 3 財政支出効率化メカニズム(2)

図 - 3 財政支出効率化メカニズム(3)

2.理論モデル

前提条件

- ◆ 1地域モデルを仮定
- ◆ 人口N、土地Lを有する地域を想定
- ◆住民は同質で同一の効用関数を持つ
- ◆都市全体の純便益は等しく、分配されている
- ◆ 地方公共財のスピル・オーバー効果はない
- ◆地方公共団体は住民の効用を最大化することを 目的に行動

都市の生産・費用モデル

地域iの生産関数: $Y_i = AN_i^{\alpha+\gamma \ln N_i} L_i^{\beta+ \ln L_i}$

効用関数: $U = U(x_i, g_i)$

地方公共財の総供給量 : $G_i = g_i N_i^{\ heta}$

公共性を表すパラメータ (0< <1)

地方公共財の供給費用: $C_i(N_i,g_i)=G_i$

私的財タームによる地 方公共財 g_i の限界生産費用 = 1

地域iの住民の総体的 予算制約式: $N_i y_i = N_i x_i + G_i$

地域iの公共財に対す る総需要関数: $G_i = z(N_i y_i)^\delta$

定数項 z ,所得弹力性

地方公共財の総供給費用: $C_i = zA^\delta N_i^{\;(\alpha+\gamma\ln N_i)\delta} L_i^{\;(\alpha+\;\ln N_i)\delta}$

推定式

$$\ln Y_{i} = \alpha_{y} + \beta_{1y} \ln N_{i} + \beta_{2y} \{\ln N_{i}\}^{2}$$
$$+ \gamma_{1y} \ln L_{i} + \gamma_{2y} \{\ln L_{i}\}^{2}$$

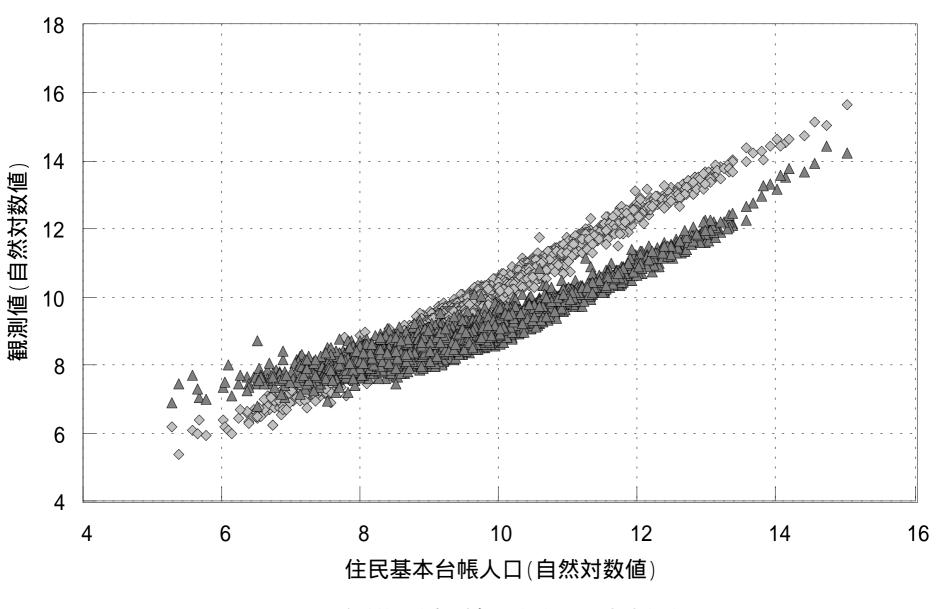
$$\ln C_{i} = \alpha_{c} + \beta_{1c} \ln N_{i} + \beta_{2c} \{\ln N_{i}\}^{2}$$
$$+ \gamma_{1c} \ln L_{i} + \gamma_{2c} \{\ln L_{i}\}^{2}$$

各都市規模の推定式

◆単位費用最小都市規模

$$N_{c-\min} = \exp\left(-\frac{(\beta_{1c}-1)}{2\beta_{2c}}\right)$$

◆純便益最大都市規模


$$N_{(y-c):\max} = \exp\left(-\frac{\beta_{1y} - \beta_{1c}}{2(\beta_{2y} - \beta_{2c})}\right)$$

3. 実証分析

3.1 都市規模に関する実証分析

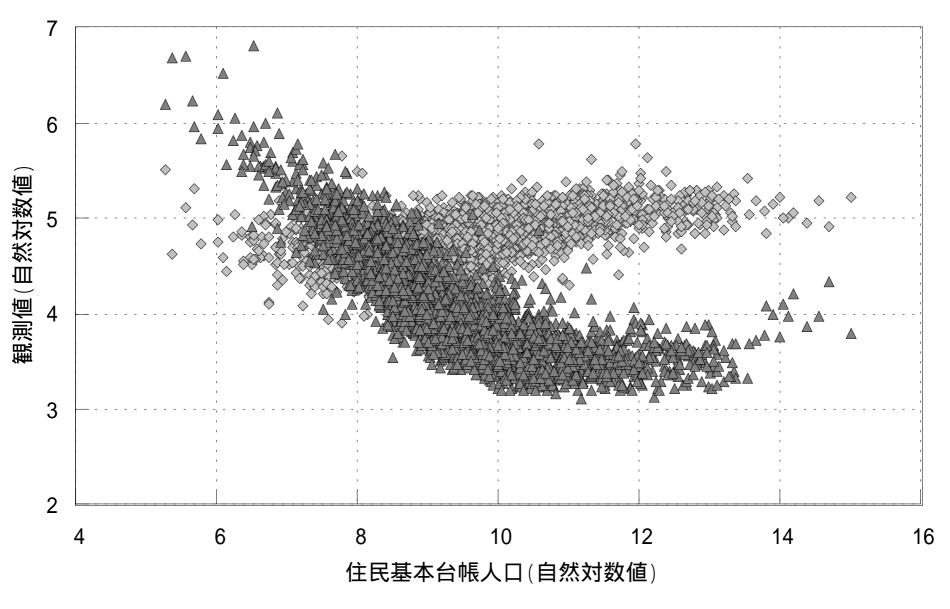

- ◆サンプル対象:全国3252市区町村
- ◆サンプル期間:1999年度
- ◆データの記述
 - C:歳出総額(百万円)
 - Y: 実質課税者対象所得額(百万円)
 - N:住民基本台帳人口(人)
 - L:地方公共団体の面積(平方キロ)

図 - 4 人口規模と総便益、総費用との関係(1999年度:3252市区町村)

▶ 実質課税者対象所得額 ▲ 歳出総額

図 - 5 人口規模と平均便益、平均費用との関係(1999年度:3252市区町村)

◇ 一人当たり実質課税者対象所得額 ▲ 一人当たり歳出額

総便益・総費用の推定結果

◆総便益曲線

$$\ln Y_i = 0.504 + 0.930 \ln N_i + 0.00879 \left\{ \ln N_i \right\}^2$$
(34.88)

$$-0.179 \ln L_i + 0.0152 \left\{ \ln L_i \right\}^2$$

$$R^2 = 0.981$$
 S.E. = 0.198

◆総費用曲線

$$\ln C_i = 9.613 - 0.830 \ln N_i + 0.0761 \left\{ \ln N_i \right\}^2$$
(55.10)

$$-0.0594 \ln L_i + 0.0249 \left\{ \ln L_i \right\}^2$$

$$R^2 = 0.954$$
 S.E. = 0.203

各種人口規模の推定結果

均衡最小都市規模	3,038人	
単位費用最小都市規模	167,420人	
純便益最大都市規模	479,022人	
社会的最適都市規模 32,605,77		
均衡最大都市規模	75,540,300人	

図 - 7 都市規模の平均便益と平均費用の理論値(1999年)

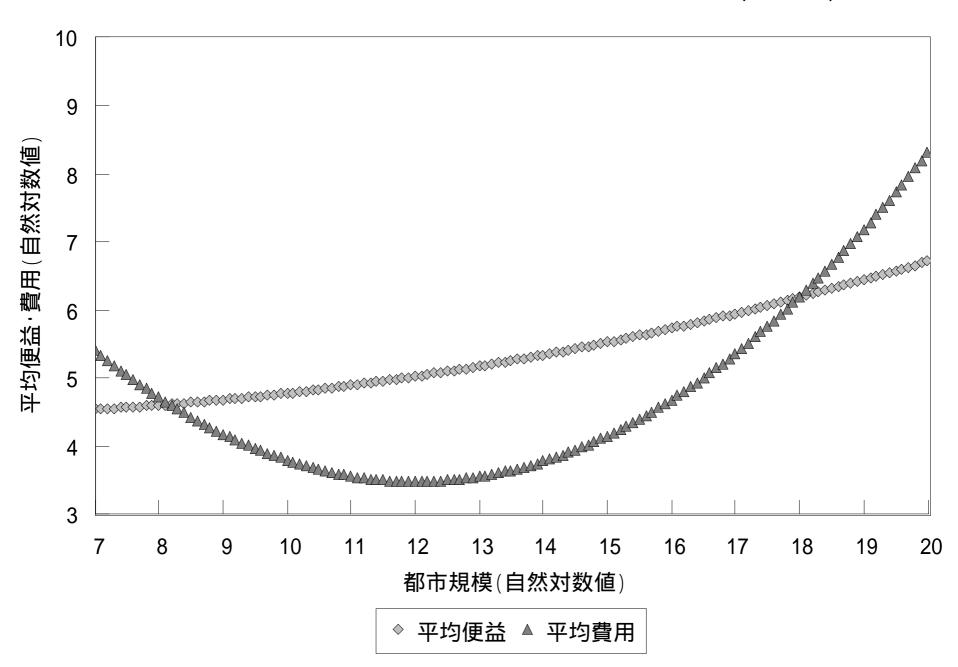
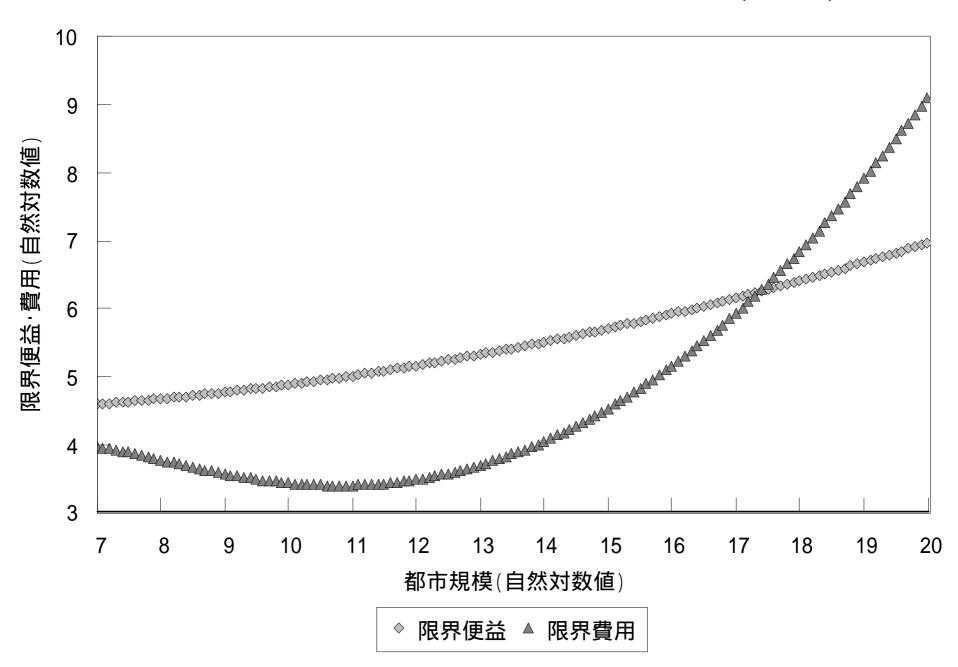



図 - 8 都市規模の限界便益と限界費用の理論値(1999年)

3.2 財政支出効率化の実証分析

- ◆サンプル対象
 - 不交付団体を除く3145市町村
- ◆推定モデル
 - ■基準財政需要額

$$BC_{i} = \varepsilon_{1c} + \varepsilon_{2c}C_{i}$$

■基準財政収入額

$$\boldsymbol{B}\boldsymbol{Y}_{i} = \boldsymbol{\varepsilon}_{1y} + \boldsymbol{\varepsilon}_{2y}\boldsymbol{Y}_{i}$$

■ 普通地方交付税額 $TR_i = \theta_1 + \theta_2 SH_i$

図 - 11 歳出総額と基準財政需要額との関係(1999年度:3145市町村)

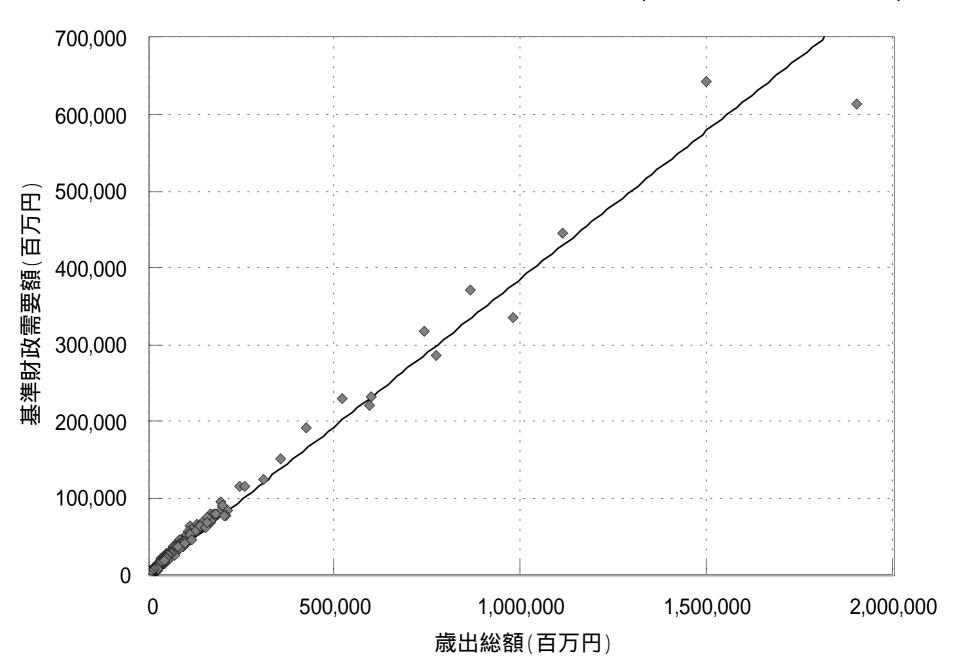


図 - 12 所得と基準財政収入額との関係(1999年度:3145市町村)

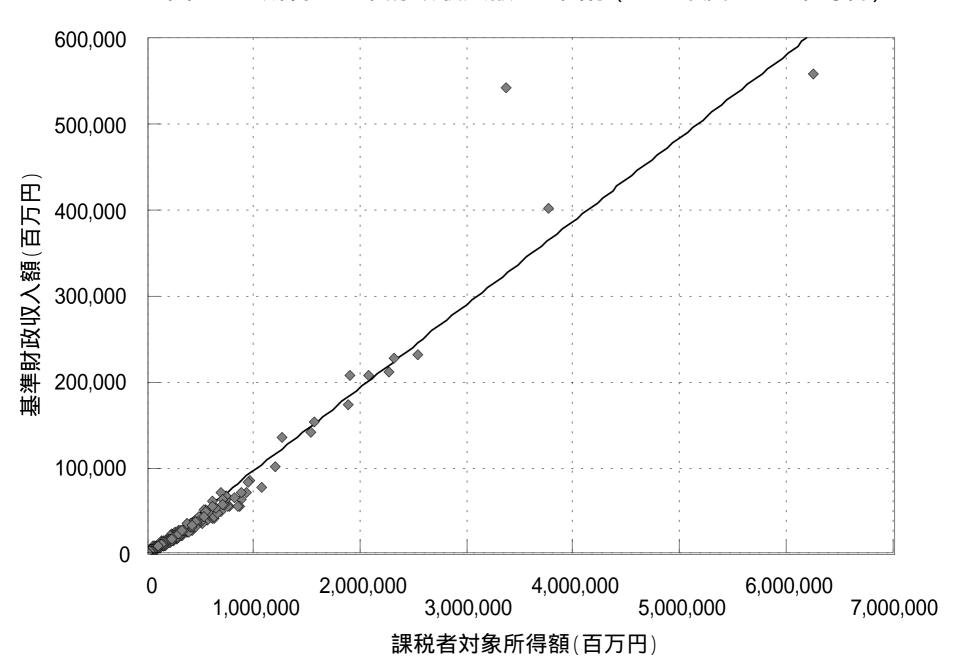
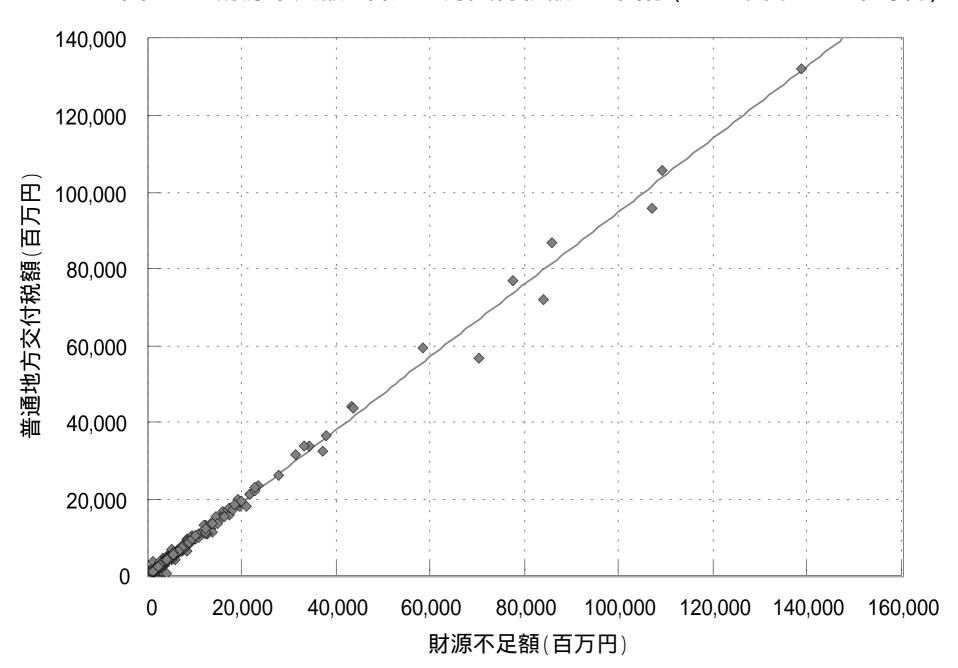



図 - 13 財源不足額と普通地方交付税額との関係(1999年度:3145市町村)

推定結果(2段階OLS)

◆基準財政需要額

$$BC_i = 1197.85 + 0.384 C_i$$

$$R^2 = 0.982$$
 S.E. = 3310.3

◆基準財政収入額

$$BY_i = -519.2 + 0.0909 Y_i + 237059 D_{OSK}$$

$$R^2 = 0.989$$
 S.E. = 2128.84

◆普通地方交付税額

$$TR_i = 142.52 + 0.942 SH_i$$

$$R^2 = 0.995$$
 S.E. = 366.74

財政効率化シミュレーションの結果

項目	単位費用 最小人口	純便益 最大人口	3252団体 平均
人口(人)	167,420	479,022	38,767
実質所得額(百万)	256,930	861,303	58,990
歳出総額(百万)	54,894	170,837	16,378
一人当たり所得額(万)	153.46	179.80	152.16
一人当たり歳出額(万)	32.79	35.66	42.25
基準財政需要(百万)	22,291	66,844	7,153
基準財政収入(百万)	22,823	77,732	4,511
地方交付税(百万)	0	0	2, <u>6</u> 73

今後の課題

- ◆より説明力のある定式化
 - ■都市規模拡大に伴う規模の不経済性を補足
 - ■都市間の物価差を考慮する精緻なデフレータ
- ◆課税者所得の取り方
 - 生産活動場所との一致
- ◆都市圏ベースでの生産関数の推定
 - = 地方公共サービスのスピル・オーバー

主な参考文献

- Alonso, W., (1971), "The Economics of Urban Size," Papers of The Regional Science Association, 26, 67-83.
- Richardson, H.W., (1973), 'The Economics of Urban Size,'Lexington, Mass.
- ◆ 生安·鄭(1998)「市町村歳出構造と最適規模に関する研究」『日本都市計画学会学術研究論文集』第33巻, 13-18.
- ◆ 坂下昇(1994)「地方公共財の地域間最適配分」『社会的共通資本 コモンズと都市』東京大学出版会, 185-221.
- ◆ 中村良平(2000)「地方財政の課題と今後の方向」『RPレビュー』 Vol.1, 17-21.
- ◆ 横道清孝・沖野浩之(1996)「財政的効率性からみた市町村合併」 『自治研究』第72巻第11号, 69-87.
- ◆ 吉村弘(1999)『最適都市規模と市町村合併』東洋経済新報社.